Main Article Content

Abstract

Big Data and AI (Artificial Intelligence) are the results of technological developments that can be enjoyed today. Big Data and AI are very helpful in the development of education and the business world. The purpose of this paper is to look at and analyze related literature studies on the application of Big Data and AI Communication in the field of education and the business world. This writing uses the literature review method from the Google Scholar online database. Four international journals related to Big Data and AI have been curated. The results of the journal literature review that have been analyzed show that Big Data and AI are closely related and help in the development of the education field and the business world such as making advertisements, post Covid-1 interactive learning, and can analyze important issues to create business value through Big Data analysis. So that the application and integration of Big Data and AI is a great opportunity to increase efficiency and effectiveness in various fields, especially in education and the business world.

Keywords

Literature review Big data Artificial Intelligence Education Business world

Article Details

Author Biographies

Shilvy Andini Sunarto, Universitas Gunadarma

Program Doktor Ilmu Komunikasi, Universitas Gunadarma, Kota Depok, Jawa Barat, Indonesia.

Citra Puspa Maulidina, Universitas Gunadarma

Program Doktor Ilmu Komunikasi, Universitas Gunadarma, Kota Depok, Jawa Barat, Indonesia

Widiastiana Vista Wijaya, Universitas Gunadarma

Program Doktor Ilmu Komunikasi, Universitas Gunadarma, Kota Depok, Jawa Barat, Indonesia

How to Cite
Sunarto, S. A., Maulidina, C. P., & Wijaya, W. V. (2024). Literature Review: Big Data and Artificial Intelligence Application for the Development of Education and Business. Kinesik, 11(3), 300-312. https://doi.org/10.22487/ejk.v11i3.1366

References

  1. A. C. Effendi and P. Satwiko. 2021. “Peran Artifical Intelligence dalam Tahap Perencanaan dan Perancangan Desain Arsitektur,” JoDA J. Digit. Archit., vol. 1, no. 1, p. 52, doi: 10.24167/joda.v1i1.3682.
  2. Anson Au. 2021. FinTech innovation and knowledge flows in Hong Kong’s financial sector: a Social Network Analysis approach. Emerald Publishing Limited, ISSN 1558-7894. DOI 10.1108/JABS-09-2020-0381
  3. Bataev, A., Gorovoy, A., & Mottaeva, A. 2018. Digital transformation of the financial sector in Russia and the world. Proceedings of the 32nd International Business Information.
  4. Bataev, A. 2018. Analysis and development the digital economy in the world. Proceedings of the 31st International Business Information Management Association Conference, IBIMA 2018: Innovation Management and Education Excellence through Vision, (pp. 61-71). Milan.
  5. Boehnke, Jörn, Pantelis Loupos & Ying Gu. 2023. Social drug dealing: how peer-to-peer FinTech platforms have transformed illicit drug markets. Annals of Operations Research. https://doi.org/10.1007/s10479-023-05617-7
  6. Danial dan Wasriah. 2009. Metode Penulisan Karya Ilmiah. Bandung: Laboratorium Pendidikan Kewarganegaraan UPI.
  7. Davenport T.H. How strategists use ‘big data’ to support internal business decisions, discovery and production. Strategy & Leadership. 42(4), (2014), 45 – 50.
  8. Enrico Battisti, Elvira Anna Graziano, Yam B. Limbu, Gian Paolo Stella. 2021. Web 2.0 and Equity Crowdfunding: A Social Network Analysis. PuntOorg International Journal. ISSN: 2499-1333. PIJ/Volume 6 - Issue 1/2021. DOI: 10.19245/25.05.pij.6.1.4
  9. Esmaeel Kalantari, Gholamali Montazer, Sepehr Ghazinoory. 2021. Mapping of a science and technology policy network based on social network analysis. Journal of Entrepreneurship, Management and Innovation. Volume 17, Issue 3, 2021: 115-147 DOI: https://doi.org/10.7341/20211734
  10. Garškaitė-Milvydienė K., Maknickienė N., Tvaronavičienė M. 2023. Insights Into Attitudes Towards Financial Innovations By Its Users. Polish Journal of Managemebt Studies. Vol. 27 No.2. DOI: 10.17512/pjms.2023.27.2.07
  11. Huh, Jisu Michelle R. Nelson & Cristel Antonia Russell. 2023. ChatGPT, AI Advertising, and Advertising Research and Education. JOURNAL OF ADVERTISING 2023, VOL. 52, NO. 4, 477–482 https://doi.org/10.1080/00913367.2023.2227013
  12. Hussain, Z. 2021. Paradigm of technological convergence and digital transformation: The challenges of CH sectors in the global COVID-19 pandemic and commencing resilience-based structure for the post-COVID-19 era. Digital Applications in Archaeology and Cultural Heritage.
  13. Leong, K., & Sung, A. 2018. FinTech (Financial Technology): what is it and how to use technologies to create business value in FinTech way? International Journal of Innovation, Management and Technology, 9(2), 74–78.
  14. Management Association Conference, IBIMA 2018 - Vision 2020: Sustainable Economic Development and Application of Innovation Management from Regional expansion to Global Growth, (pp. 102-114).
  15. M. Fuad, Christin H, Nurlela, Sugiarto, Paulus, Y.E.F. 2000. Pengantar Bisnis, Jakarta: Gramedia Pustaka Utama, 2000, hal. 1
  16. Praful Bharadiya, Jasmin. 2023. Machine Learning and AI in Business Intelligence: Trends and Opportunities. International Journal of Computer (IJC) - Volume 48, No 1, pp 123-134.
  17. Prabowo, Nugroho Agung 2021. Social Network Analysis for User Interaction Analysis on Social Media Regarding E-Commerce Business. International Journal of Informatics and Information System Vol. 4, No. 2.
  18. Prescott M.E. 2014. Big data and competitive advantage at Nielsen. Management Decision. 52, , 573–601.
  19. Russom, P. 2011. Big Data Analytics. TDWI Best Practices Report.
  20. Safitri, T. A. 2021. Kontribusi FinTech Payment Terhadap Perilaku Manajemen Keuangan di Masa Pandemi COVID-19. Jurnal Ekonomi Manajemen Sumber Daya.
  21. Schomm F., Stahl F. and Vossen G. 2013. Marketplaces for data: an initial survey. SIGMOD Record. 42. 15–26
  22. Schueffel, P. 2016. Taming the beast: A scientific definition of FinTech. Journal of Innovation Management, 4(4), 32–54.
  23. Song, Jianmin, dkk. 2022. The Source of SMEs’ Competitive Performance in COVID‑19: Matching Big Data Analytics Capability to Business Models. Springer - Information Systems Frontiers 24:1167–1187
  24. Sri Handika Utami, Anton Ade Purnama, and Achmad Nizar Hidayanto. 2022. FinTech Lending in Indonesia: A Sentiment Analysis, Topic Modelling, and Social Network Analysis using Twitter Data. International Journal of Applied Engineering & Technology Vol.4 No.1 Juni. ISSN: 2633-3828.
  25. Sugiyono. 2012. Metode Penelitian Kuantitatif kualitatitf dan R&D. Alfabeta: Bandung.
  26. Sulistyo-Basuki. 2010. Metode Penelitian. Penaku: Jakarta.
  27. Tantri, Francis. 2009. Pengantar Bisnis, (Jakarta: Rajawali Pers, 2009), hal. 4
  28. Vrontis, D., Christofi, M., Battisti, E., dan Graziano, E.A. (2020), "Modal intelektual, berbagi pengetahuan, dan urun dana ekuitas", Jurnal Modal Intelektual. DOI: 10.1108/JIC-11-2019- 0258
  29. Wamba S.F., Akter S., Edwards A., Chopin G. and Gnanzou D. 2015. How ‘big data’ can make big impact: Findings from a systematic review and a longitudinal case study. International Journal of Production Economics. 165, 234–246.
  30. Yang, Zhaowen. 2021. Application and Development of Big Data in Chinese Business Education. Technium Social Sciences Journal Vol. 23, 150-163, September, 2021 ISSN: 2668-7798.
  31. Yu, Z., Serban, N., & Rouse, W. 2013. The demographics of change: Enterprise characteristics and behaviors that influence transformation. Journal of Enterprise Transformation, 3(4), 285-306